
 Skygazers Almanac 40in
 EVENING A SUPPLEMENT TO SKY \& TELESCOPE
 MORNING

EVENING SKY
Jan 2 Earth is $91,404,095$
miles from the
Sun Sun (perihelion) at $7: 39 \mathrm{p}$
Mar 19 Spring begins at the equinox, 11:06 p.m. EDT

Mar 24 Mercury stands at greatest elongation,

Apr 8 A total solar eclipse Mexico a path from Maine and Newfoundland the eclipse is partial in the rest of North America, except Alaska
Apr 20 Uranus is 0.5° from Jupiter Jun 20 Longest day, $15^{\mathrm{h}} 01^{\mathrm{m}}$ at latitude 40° north; summer begins at the solstice, $4: 51$ p.m. EDT
Jun 24 Latest end of evening twilight Jun 27 Latest sunset
Jul 6 Mercury is almost centered on the Beehive Cluster (M44)
Jul 21 Mercury is 27° east of the Sun Jul 24 Regulus is 2.1° above Mercury Aug 4 Regulus is 1.0° from Venus Sep 7 Saturn is at opposition tonight Sep 17 North America has a slight partial eclipse of the Moon around 10:44 p.m. EDT Sep 20 Neptune is at opposition Oct 2 An annular solar eclipse goes over southern Chile and Argentina
Nov 15 Mercury is 23° east Nov 16 Uranus's opposition Dec 4 Earliest end of evening Dec 7 Earliest sunset; Jupiter reaches opposition
tonight Dec 21 Shortest day, $9^{\mathrm{n}} 20^{\mathrm{m}}$ at
latitude 40° (2) NOVEMPEA

Skygazeris Almanac $40^{\circ} \mathrm{N}$

What's in the sky tonight?

When does the Sun set, and when does twilight end? Which planets are visible? What time does the Moon rise?

Welcome to the Skygazer's Almanac 2024, a handy chart that answers these and many other questions for every night of the year. It is plotted for skywatchers near latitude 40° north - in the United States, the Mediterranean countries, Japan, and much of China.

For any date, the chart tells the times when astronomical events occur during the night. Dates on the chart run vertically from top to bottom. The time of night runs horizontally, from sunset at left to sunrise at right. Find the date you want on the left side of the chart, and read across toward the right to find the times of events. Times are labeled along the chart's top and bottom.

In exploring the chart you'll find that its night-to-night patterns offer many insights into the rhythms of the heavens

The Events of a Single Night

To learn how to use the chart, consider some of the events of one night. We'll pick January 7, 2024.

First find "January" and " 7 " at the left edge. This is one of the dates for which a string of fine dots crosses the chart horizontally. Each horizontal dotted line represents the night from a Sunday evening to Monday morning. The individual dots are five minutes apart.

Every half hour (six dots), there is a vertical dotted line to aid in reading the hours of night at the chart's top or bottom. On the vertical lines, one dot is equal to one day.

A sweep of the eye shows that the line for the night of January $7-8$ crosses many
slanting event lines. Each event line tells when something happens.

The dotted line for January 7-8 begins at the heavy black curve at left, which represents the time of sunset. Reading up to the top of the chart, we find that sunset on January 7th occurs at 4:51 p.m. Local Mean Time. (All times on the chart are Local Mean Time, which can differ from your clock time. More on this later.)

Following the dotted line for the 7th rightward, we see that at 6:27 evening twilight technically ends. This is when the Sun is 18° below the horizon and the sky is fully dark. At 6:33 the bright star Sirius rises, so we know it will be visible most of the night.

The giant planet Jupiter transits the meridian at 7:07, meaning it is due south and "riding high," an excellent time to examine it in a telescope.

At 7:55 Polaris, the North Star, has its upper culmination. It then stands directly above the north celestial pole (by 38^{\prime} this year), a good time to check the polar alignment of an equatorial telescope mount.

The famous Pleiades star cluster transits at 8:40 p.m., so it is well placed for viewing in a telescope. At the same time, however, the ringed planet Saturn sets, so we won't be observing it later tonight.

The Great Orion Nebula M42 transits at 10:28, as does Sirius at 11:37. Transit times of celestial landmarks help us keep track of the march of constellations across the night sky.

Running vertically down the midnight line is a scale of hours. This shows the sidereal time (the right ascension of objects on the meridian) at midnight. On January $7-8$ this is $7^{\mathrm{h}} 09^{\mathrm{m}}$. To find the sidereal time at any other time and date on the chart, locate that point and draw a line through it parallel to the white event lines of stars. See where your line intersects the sidereal-time scale at midnight.
(A star's event line enters the top of the chart at the same time of night it leaves the bottom. Sometimes one of these segments is left out to avoid crowding.)

Near the midnight line is a white curve labeled Equation of time weaving narrowly right and left down the chart. If you regard the midnight line as noon for a moment, this curve shows when the Sun crosses the meridian and is due south. On January 7th the Sun runs slow, transiting at 12:06 p.m. This deviation, important for reading a sundial, is caused by the tilt of the Earth's axis and the ellipticity of its orbit.

At 1:51 a.m. Jupiter finally sets. The wee hours continue, and at 3:00 the star Regulus transits. At 4:42 the brilliant planet Venus rises. Then a few minutes later a tiny Moon symbol appears on the dotted line, and we can tell from the legend at the bottom of the chart that it is at waning crescent phase, rising.

The elusive planet Mercury rises at 5:40 a.m. That's even before the first hint of dawn - start of morning twilight - at 5:45. For those with an ocean horizon, the red planet Mars comes up at 6:27. The Sun finally peeks above the horizon at 7:22 a.m. on January 8th.

Other Charted Information

Many of the year's chief astronomical events are listed in the chart's evening and morning margins. Some are marked on the chart itself.

Conjunctions (close pairings) of two planets are indicated by a σ symbol on the planets' event lines. Here, conjunctions are considered to occur when the planets actually appear closest in the sky, not merely when they share the same ecliptic longitude or right ascension.

Opposition of a planet, the date when it is opposite the Sun in the sky and thus visible all night, occurs roughly when its transit line crosses the Equation-of-time
line (not the line for midnight). Opposition is marked there by a σ° symbol, as for the dim planet Neptune on the night of September 20-21.

Moonrise and moonset can be told apart by whether the round limb - the outside edge - of the Moon symbol faces right (waxing Moon sets) or left (waning Moon rises). Or follow the nearly horizontal row of daily Moon symbols across the chart to find the word Rise or Set. Quarter Moons are indicated by a larger symbol. Full Moon is always a large bright disk whether rising or setting; the circle for new Moon is open. P and A mark dates when the Moon is at perigee and apogee (nearest and farthest from Earth, respectively).

Mercury and Venus never stray far from the twilight bands. Their dates of greatest elongation from the Sun are shown by symbols on their rising or setting curves. Asterisks mark their dates of greatest illuminated extent in square arcseconds. For example, this occurs for Mercury on the evening of March 15th this year.

Meteor showers are marked by a starburst symbol on the date of peak activity and at the time when the shower's radiant is highest in the night sky. This is often just as morning twilight begins.

Julian dates can be found from the numbers just after the month names on the chart's left. The Julian Day, a sevendigit number, is a running count of days beginning with January 1, 4713 BC. Its first four digits this year are 2460, as indicated just off the chart's upper left margin. To find the last three digits for evenings in January, add 310 to the date. For instance, on the evening of January 7th we have $310+7=317$, so the Julian Day is $2,460,317$. For North American observers this number applies all night, because the next Julian Day always begins at 12:00 Universal Time (6:00 a.m. Central Standard Time).

Time Corrections

All events on this Skygazer's Almanac are plotted for an observer at longitude 90° west and latitude 40° north, near the population center of North America. However, you need not live near Peoria, Illinois, to use the chart. Simple corrections will allow you to get times accurate to a couple of minutes anywhere in

Rising or Setting Corrections						
	Declination (North or South)					
	$0{ }^{\circ}$	5°	10°	15°	20°	25°
50°	0	7	14	23	32	43
$\stackrel{\circ}{0} 45^{\circ}$	0	3	7	10	14	19
\% 40°	0	0	0	0	0	0
¢ 35°	0	3	6	9	12	16
$\chi^{\mathbf{2}} 3{ }^{\circ}$	0	5	11	16	23	30
25°	0	8	16	24	32	42

the world's north temperate latitudes.
To convert the charted time of an event to your civil (clock) time, the following corrections must be made. They are mentioned in order of decreasing importance:

- Daylight-saving time. When this is in effect, add one hour to any time obtained from the chart.
- Your longitude. The chart gives the Local Mean Time (LMT) of events, which differs from ordinary clock time by a number of minutes at most locations. Our civil time zones are standardized on particular longitudes. Examples in North America are Eastern Time, $75^{\circ} \mathrm{W}$; Central, 90°; Mountain, 105°; and Pacific, 120°. If your longitude is very

Local Mean Time Corrections			
Atlanta	+38	Los Angeles	-7
Boise	+45	Memphis	0
Boston	-16	Miami	+21
Buffalo	+15	Minneapolis	+13
Chicago	-10	New Orleans	0
Cleveland	+27	New York	-4
Dallas	+27	Philadelphia	+1
Denver	0	Phoenix	+28
Detroit	+32	Pittsburgh	+20
El Paso	+6	St. Louis	+1
Helena	+28	Salt Lake City	+28
Honolulu	+31	San Francisco +10	
Houston	+21	Santa Fe	+4
Indianapolis	+44	Seattle	+9
Jacksonville	+27	Tulsa	+24
Kansas City	+18	Washington	+8
Athens	+25	Lisbon	+36
Baghdad	+3	Madrid	+75
Beijing	+14	New Delhi	+21
Belgrade	-22	Rome	+10
Cairo	-8	Seoul	+32
Istanbul	+4	Tehran	+4
Jerusalem	-21	Tokyo	-19

close to one of these (as is true for New Orleans and Denver), luck is with you and this correction is zero. Otherwise, to get standard time add 4 minutes to times obtained from the chart for each degree of longitude that you are west of your time-zone meridian. Or subtract 4 minutes for each degree you are east of it.

For instance, Washington, DC (longitude 77°), is 2° west of the Eastern Time meridian. So at Washington, add 8 minutes to any time obtained from the chart. The result is Eastern Standard Time.

Find your time adjustment and memorize it. The table below left shows the corrections from local to standard time, in minutes, for some major cities.

- Rising and setting. These times need correction if your latitude differs from 40° north. This effect depends strongly on a star or planet's declination. (The declinations of the Sun and planets are listed monthly on the Planetary Almanac page of Sky \& Telescope.)

If your site is north of latitude 40°, then an object with a north declination stays above the horizon longer than the chart shows (it rises earlier and sets later), whereas one with a south declination spends less time above the horizon. At a site south of 40°, the effect is just the reverse. Keeping these rules in mind, you can gauge the approximate number of minutes by which to correct a rising or setting time from the table above.

Finally, the Moon's rapid orbital motion affects lunar rising and setting times if your longitude differs from 90° west. The Moon rises and sets about two minutes earlier than the chart shows for each time zone east of Central Time, and two minutes later for each time zone west of it. European observers can simply shift each rising or setting Moon symbol leftward a quarter of the way toward the one for the previous night.

For reprints (item SGA24W, \$6.95 each) or to order a similar chart for latitude 50° north or 30° south, go to: shopatsky.com/collections/maps-globes/almanacs

Skygazer's Almanac 2024 is a supplement to Sky \& Telescope Magazine, 1374 Massachusetts Avenue, Cambridge, MA 02138, USA, skyandtelescope.org. ©2023 AAS Sky Publishing, LLC. All rights reserved.

A A AMERICAN | A | A ASTRONOMICAL |
| :--- | :--- | SOCIETY

