CCD Astronomy

• CCD imaging is visual astronomy
 – Those well travelled photons arriving from extremely distant objects are collected by the telescope optics and captured by the CCD in the camera
 – The CCD counts those photons at every detector (pixel) and sends the results to a computer
 – The computer processes those results and presents them on its display for your (and other’s) visual enjoyment

• CCD imaging is a magical process
 – Greatly increases the sensitivity of the observer’s eye
 – Brings out color and detail in deep sky objects that can’t be seen any other way
 – Downside – it’s not real time and refinement takes a little effort
What Does it Take?

• Any amateur astronomer can make CCD magic happen
 – It takes is some extra equipment, some specialized software and an understanding of the CCD imaging process

• There are no closely guarded secrets – there are a few key things you need to focus on:
 – Long exposures with a sensitive camera
 – Precise focus
 – Steady tracking equatorial mount
 – Precise polar alignment
 – Good quality optics
CCD Camera = Sensitivity

SBIG ST-8XME Camera and 5 Position Filter Wheel

Sensitivity (QE) Comparison
CCD versus DSLR
CCD Camera = Low Noise

• Active Cooling
 – Fan(s)
 – Thermoelectric
 – Water Assisted

• Controlled Temperature
 – Precise Calibration

• Special Low Noise Circuit Designs
Precise Focusing

NGC0457
The Owl Cluster
Focusing Techniques

• Camera Control SW
 – OK, but not optimal

• Diffraction Grating
 – Bahtinov mask
 – Accurate, inexpensive

• Automation (FocusMax)
 – Motorized focuser
 – Special software
 – Fast, accurate
Accurate Tracking

Accurate Tracking = Round Stars + Sharp Detail

Inaccurate Tracking = Elongated Stars + Motion Blur

M3
Polar Alignment

- Equatorial Mounts are ideal for imaging
 - Rotation on only 1 axis needed to follow an object in the sky
- RA axis must be accurately aligned with Earth’s polar axis
 - A few degrees is adequate for finding objects with go-to feature
 - A few arc minutes is essential for long exposure deep sky imaging
- Polar alignment errors cause the field seen by the camera to rotate as it is tracked
 - Long exposures that track perfectly will still suffer star elongation and motion blur
Mount Tracking Errors

“Typical” Losmandy G11

Upgraded Losmandy G11
Periodic Error Correction
Autoguiding

• Automatically correct mount tracking errors during exposure
 – Employ a second camera (sensor) focused on a relatively bright star and special software
 – Take rapid exposures of the guide star and continuously measure its position on the sensor
 – Send commands to the mount as required to maintain the guide star at the same position on the sensor

• Guide scope method
 – Guide with a second scope and camera on the same mount

• Self-guiding method
 – Guide using a second sensor or camera on the imaging telescope
Self-Guiding Example

M91
CCD Imaging Hardware

- Permanent Pier
- Losmandy G-11 with Gemini
- Celestron C9.25 with Robofocus
- Stellarvue SV90TBV with Digital FeatherTouch
- Optec Pyxis 2” Rotator
- DewBuster and Straps
- USB and USB-Serial Hubs
- MacBook Pro running Windows XP (Bootcamp)
- 12 VDC Converter
My CCD Imaging Equipment
CCD Imaging Software

- CCDNavigator - Target Selection and Session Planning
- CCDSofv5 - Camera Control
- FocusMax - Automated Focusing
- TheSky6 - Planetarium Program
- ASCOM Driver - Telescope Control
- MaxPoint - Pointing Model Refinement
- PinPoint - Plate Solves
- CCDAutoPilot - System Automation
CCD Imaging Process

• Preparation
• Set Up Equipment
• Acquire Image Data (L, R, G, B, Ha, …)
• Acquire Calibration Data (Darks, Flats & Bias)
• Pre-Process Raw Data
 – Create master flats and darks
 – Calibrate image data files
 – Clean up, normalize, align and combine each channel
 – Export one each L (.fits) and LRGB (.tiff) files
• LLRGB Processing in Photoshop
Preparation is Key

• Identify Promising Targets
 – Lots of possible sources
 • Fellow astronomers / astro-photographers
 • Publications, like S&T
 • Web sites
 • Software

• Plan the Session(s) in Detail
 – CCDNavigator + TheSky6 are my tools of choice
 • Frame the object, with guide star on internal chip
 • Optimize target / filter sequence (LRGB stair-step)
 • Tightly integrated with my automation program (CCDAutopilot)
Good Planning Gets Results

Planned

Actual Image

M63
Sunflower Galaxy
Evolution of a CCD Image

IC5067/5070
Pelican Nebula
CCD Imaging with Automation

~ 42 hours of exposure time between 8th and 20th of February 2010
How much does it cost?

<table>
<thead>
<tr>
<th>Item Description</th>
<th>New</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losmandy G11 with Gemini</td>
<td>3500</td>
<td>2650</td>
</tr>
<tr>
<td>Stellarvue 90mm Refractor</td>
<td>1995</td>
<td>1395</td>
</tr>
<tr>
<td>Moonlite 2.5” Focuser w/ Motor</td>
<td>535</td>
<td>375</td>
</tr>
<tr>
<td>RoboFocus System</td>
<td>345</td>
<td>250</td>
</tr>
<tr>
<td>Optec Pyxis 2” Rotator</td>
<td>925</td>
<td>500</td>
</tr>
<tr>
<td>5-Pos Filter Wheel & Filters</td>
<td>885</td>
<td>650</td>
</tr>
<tr>
<td>SBig ST-8XME Camera</td>
<td>2495</td>
<td>1895</td>
</tr>
<tr>
<td>Equipment Total</td>
<td>10680</td>
<td>7715</td>
</tr>
</tbody>
</table>
How much does it really cost?

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Total</td>
<td>7715 – 10680</td>
</tr>
<tr>
<td>The Sky X</td>
<td>349</td>
</tr>
<tr>
<td>CCDWare Product Suite</td>
<td>730</td>
</tr>
<tr>
<td>Photoshop CS5</td>
<td>610</td>
</tr>
<tr>
<td>Astronomy Tools PS Action Set</td>
<td>22</td>
</tr>
<tr>
<td>Neat Image PS Plug-in</td>
<td>80</td>
</tr>
<tr>
<td>Software Total</td>
<td>1791</td>
</tr>
<tr>
<td>Grand Total</td>
<td>9506 – 12471</td>
</tr>
</tbody>
</table>
Recommended Resources

• Local Astronomy Club
• Many Good Resources on the Web
 – http://www.skyandtelescope.com/howto/astrophotography
• Many Good Books
 – The New CCD Astronomy, R. Wodaski
 – The NewAstro Zone System for Astro Imaging, R Wodaski
Does the CCD Magic Last?

• I do for me.
• I've been CCD imaging for over six years and still enjoy it immensely.
• I plan to continue in the hobby for many more years.
• I hope others in the club will explore this part of "visual" astronomy, too.

M13
10/1/05
M33
Pinwheel Galaxy